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Abstract

This paper proposes a Low Management Cost computing Grid

model (LMCGrid), aiming at harvesting the idle time of computers

connected to Internet to run large-scale distributed applications. In

LMCGrid, no specific node is designated to manage dynamically

changing resources. Despite the absence of the management node,

the corresponding information mechanism, task scheduling algorithm

and limited task duplicating algorithm naturally evolve the system

into equilibrium to perform large-scale distributed computation with

low cost. A simulation software package has been developed to verify

this model and to assess its performance. The results showed that

LMCGrid reasonably distributed loads in a dynamic environment,

and fully utilized the computational capacity of idling resources,

and that it was feasible to solve large-scale, embarrassingly parallel

applications such as parameter sweep and Monte Carlo simulations

efficiently.
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1. Introduction

In the research of computation grid, one of the key aspects
is to use idle computing resources on Internet to process
large-scale distributed applications effectively. The chal-
lenges confronted by the grid are that it must aggregate
adequate resources and utilize them effectively in dynamic
Internet. In SuperWeb [1], Javelin [2] and Charlotte [3]
grid system, a central proxy is introduced to accomplish all
management tasks including responding to users’ requests,
managing idle resources, scheduling tasks, etc. Central
proxy may be the bottleneck and grid may risk single
point failure. To eliminate central bottleneck, XtremWeb
[4], Bayanihan [5], Javelin++ [6] and Javelin2.0 [7] utilize
proxy network instead of single proxy to complete man-
agement, in which one proxy manages limited designated
resources and all proxies are managed by a central server.
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However, the costs devoted to management and maintain-
ing coherence as well as synchronization of proxies are
high. Studies of above systems indicate that management,
no matter central or distributed methods against dynamic
and alterable resources in Internet would lead to enormous
performance and communication cost and management
essentially restricts the utilization of large-scale common
resources in Internet.

For the sake of aggregating enormous computing re-
sources without any additional hardware cost, this paper
presents Low Management Cost computing Grid (LMC-
Grid) model and lays out its critical information mech-
anism and scheduling mechanism. LMCGrid is designed
without any central proxy because nodes in LMCGrid are
controlled by themselves. The expansibility and usability
of LMCGrid are reasonably well when it is confronted with
large-scale dynamic computing resources. The rest of this
paper is organized as follows: Section 2 describes the archi-
tecture of LMCGrid. Section 3 introduces the information
mechanisms. The task scheduling is presented and anal-
ysed in Section 4. The limited task duplicating algorithm
is described in Section 5. Simulations and analysis are
introduced in Section 6 and finally we come to a conclusion
in Section 7.

2. LMCGrid Architecture

LMCGrid is composed of computing resources connected
with each other logically and two computers identified as
neighbour node to one another when they are logically con-
nected. All nodes with uniform statuses play the same role
in LMCGrid and no management nodes exist. One node
in LMCGrid manages its computing resource and does not
need to monitor others’ statuses. New participant node
shares its resource and gains service from grid by estab-
lishing neighbouring relations with some nodes already in
the system. User can submit tasks at any node and get
computing results at the submitting node. Fig. 1 shows
the architecture of LMCGrid node.

Distributed applications such as parameter sweep
problem and Monte Carlo method are divided into pieces
of parallel tasks and submitted on node which is named
task source node. Tasks from neighbouring nodes and local
nodes are organized as a task queue by the task manager
and manager is also in charge of collecting results of local
running tasks and returning them to corresponding source
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Figure 1. Architecture of node.

nodes. Local information manager maintains a neighbour
nodes list, in which information of neighbour nodes is
stored, and according to the list, task scheduler delivers
tasks to local running unit or to neighbouring nodes, also
the list is updated during task scheduling. Local resource
manager gets usage status of local resource and decides to
suspend, execute or terminate task running on local node.

LMCGrid is confronted two critical challenges due to
the absence of global management entry and integrated
information of grid. Firstly, it ought to shape proper
computing resource areas to serve different source nodes.
Secondly, grid should provide persistent and reliable com-
putation power despite network dynamics. Task distribut-
ing algorithm and limited duplicating algorithm based
on information mechanism are presented to achieve these
two goals.

3. Information Mechanisms

A neighbouring nodes list is maintained by every node and
it stores the information of local resource and neighbouring
nodes which is used to schedule tasks by local nodes.

3.1 Relative Ability and Control Information

Computing resources connected to Internet have many
dynamic varying differences, such as different computing
cycles, CPU loads and network bandwidth, real-time mon-
itoring of resources statuses would perform at a high cost
of communication and computation cycles. However, com-
puting capability is the universal attribute involved in the
computer, and we abstract it as two statues: “able” and
“disabled” despite its heterogeneity and variability. While
“able” status is marked with 1, the “disabled”, 0. The
following are the definitions of ability:
Definition 1 (Local ability). Let L(V ,V ) indicate node
V ’s local ability. If node V is running a task for LMCGrid,
V is “disabled”, or else V is “able”.
Definition 2 (Relative ability). Let R(U ,V ) indicate
the relative ability which node V relative to node U , V is

a neighbouring node of U , and R(U ,V )=
N(V )−1

||
i=1

R(V, Vi)||

L(V, V ), N(V ) is the number of V ’s neighbouring nodes,
Vi is the V ’s neighbour node, and Vi �=U . R(U ,V ) is a
recursive definition. It represents V ’s local ability and its
all neighbours’ ability.

LMCGrid users can submit applications from any node
and it would lead to a result that multi-nodes compete
against each other to dominate a single node for lack of
global management of grid. To resolve the competition
we presents control information C(U ,V ) to mark status of
node V relativity to U in terms of competition. C(U ,V )
can be depicted with following three statuses:

1. Boundary : It means that V belongs to another source
node’s computing area and U cannot distribute task
to V , V is the boundary node of U .

2. Dominate : It means U firstly serves V and would
reject tasks from other nodes.

3. Normal : Status other than Boundary and Dominate
is marked as Normal.

3.2 Neighbour Nodes List and Information Modifi-
cation Mechanism

Neighbour nodes list stores the local ability and relative
ability of neighbour nodes. Assuming node U ’s neighbour
is V and A, Table 1 shows U ’s neighbour node list, in which
the first item is U ’s local ability and control information.
When new node joins in grid, relative ability is set “able”
and control information is normal in its neighbour nodes
list.

Table 1
A Sample of Neighbour Nodes List

Node ID Relative Ability Control Information

U L(U,U) C(U,U)

V R(U, V ) C(U, V )

A R(U,A) C(U,A)

During running of LMCGrid, the node does not detect
neighbour’s status on its own initiative. Only in case of
distributing tasks, completion of local tasks running and
entering of new node, the node will inform its dominative
node to update information about it. Also, information in
list cannot absolutely represent the real status of neighbour
nodes. However, LMCGrid task scheduling mechanism
guarantees that tasks can be correctly distributed. The
modification mechanism of neighbour nodes list eliminates
much cost in contrast with method of real-time monitoring
resources.

4. Task Scheduling

Based on information manager, task distributing algorithm
is presented to distribute tasks to idle nodes smoothly
without global information. When node detects tasks
in queue as well as “able” node in neighbour nodes list,
it would start to schedule task. Algorithm 1 layered
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out LMCGrid task scheduling mechanism by example of
node U :

Algorithm 1: Task scheduling algorithm

1. Node U checks value of L(U ,U) and if L(U ,U) is 1,
U runs task itself and sets L(U ,U)= 0, then goes to
step 5. Otherwise, it goes to step 2.

2. Get one node V which R(U ,V ) is 1 from neighbour
nodes list, and send task to V , then set R(U ,V )= 0.

3. When V receives task from U , it then decides whether
to accept task according to resource competition algo-
rithm:

3.1 If V can receive task, then V places task in task
queue and set R(V ,U)= 0. Also V compares the
length of task queue with the number of “able”
neighbour nodes in neighbour nodes list. If the
length is less than the number, V returns a message
that V is still “able” to U , or else it returns
nothing. Then it goes to step 5.

3.2 If V refuses to serve U , go to step 2.

4. Node U receives message that node V still can serve
U , it sets R(U ,V )= 1. If this makes the relative ability
that node U relative to its dominative node changing
from 0 to 1, U would return “able” message to its
dominative node too.

5. U takes next task from queue and goes to step 1.

Algorithm 2: Resource competition algorithm

1. V looks up the neighbour node list to find who domi-
nates V .

2. If dominative node does not exist, V accepts task and
set C(V ,U)=Dominate. Then algorithm ends.

3. If C(V ,K) equals Dominate and “V ’s” dominative
node is K, compares K with U :

3.1 If K equals U , V accepts the task and ends algo-
rithm.

3.2 If K does not equal U , then informs U that V can-
not receive task from it, set C(V ,U)=Boundary
and R(V,U)= 0 to avoid distributing tasks to U .

4. If U receives information that V refuses to serve, it
sets C(U, V )=Boundary.

Node schedules tasks to its “able” neighbour nodes
in turn and tasks submitted by users are spread in net-
work step by step, distributing process can be considered
as an extent preferential search process from source node.
Resource competition algorithm resolves the competition
during the spreading of different source nodes. The spread-
ing and competition processing would form many resource
areas for respective source node. However, when boundary
node is idle and its dominative node has not sent any tasks
to it for a certain time, boundary node would inform its
boundary neighbour nodes so that they can compete for
node again and resource areas would vary at that time.
Resources can be fully utilized during dynamic competi-
tion.

5. Limited Task Duplicating Algorithm

Internet comprises of large-scale nodes which may enter,
exist and become invalid at any time. Heartbeat inspect-
ing, period checkpoint [8], etc. are presented to avoid
uncertainty of changing Internet, but these approaches
face great challenges of massive consumption of network
bandwidth and CPU cycles. We take limited task dupli-
cating algorithm to deal with variability of network. The
following is the description of the algorithm.

Source node organizes tasks submitted by users as a
list. Task scheduler distributes a task every time and does
not wait for result returning, it goes on to schedule next
task in list. When all tasks in list have been scheduled
in order, it finishes a scheduling loop and scheduler would
process the next loop from the head of list. During
scheduling, a returning of task result will trigger removing
of corresponding item from list. When scheduling loop
executes max scheduling times (MST) times, unfinished
tasks in list will be only assigned to local source nodes
to run at the MST+1 times. Algorithm does not need
monitoring status of node and task, and so long as the
source node works well, the task would be completed
successfully even all other nodes running duplications of
task go to fail. It is a heuristic algorithms like RR [9]
and WQR [10]. The studies of these algorithm show
that when the MST equals 3 or more, task achievement
efficiency using these heuristic algorithms is not bad than
that of DFPLTF [10] and Suffrage-C [11] which need know
dynamic information of node ability and task grain [9,
10]. Limited task duplicating algorithm gains reliability
and performance at the cost of limited extra computation
and our simulation below shows that extra computation is
acceptable when duplicating times equal 4 or 5.

6. Simulations and Analysis

A simulation software package has been developed to verify
the correctness of LMCGrid and assess its performance. In
simulation, task grain and time of transferring task are all
weighed as time steps. Task grain is the executing time
steps on a node with 1 computing capabilities. A task’s
running time on a node with 1 computing capabilities is
twice longer than that on node with 2 capabilities. Time
transferring a task from one node to another is supposed
as 1 time step. Performance of LMCGrid is measured by
comparing the amount of computation finished by node
with its computing capacities when all applications are fin-
ished. Based on this we study whether the node resources
are fully utilized by LMCGrid, and also the extra compu-
tation consumed by limited task duplicating algorithm is
simulated and analysed.

LMCGrid is an Internet-based model. To analyse its
performance on Internet, a simulation Internet topology
based on autonomous systems level is created according to
BA model [12]. Fig. 2 demonstrates that it is comprised
of 1,000 nodes and its distribution of degree and average
number of degree are consistent with Internet autonomous
systems-level topology characters [13]. We focus on LMC-
Grid performance on this complex topology. However, its
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Figure 2. The simulation topology of autonomous systems-
level Internet with 1,000 nodes and <k>=3.59.

Figure 3. A simple system topology.

simulation results are too complex to lay out it clearly. To
display the special characters of LMCGrid, the results on
a simple topology in Fig. 3 are presented as well. In Figs. 2
and 3, the line represents the neighbour relation between
two nodes.

Topology in Fig. 3 is comprised of circle, line and
star-graph, the result on it would represent some universal
validities and characters of LMCGrid. Simulation results
on simple topology of Fig. 3 are presented in Figs. 4, 5
and 6, in which X axis indicates the node’s ID. Y arrow
is computation load amount of node, and the figures are
average results of 10 times simulation. One thousand tasks
are submitted to each source node every time, and the task
grain is randomly generated following uniform distribution
U(50,80).

Fig. 4 shows the results that all nodes have the same
computing capacities, in which nodes 0 and 9 are source
nodes. The computation load finished by each node is
almost the same and it shows that all nodes’ computing
capabilities are utilized fully and achieve load balance.
Even more, computation load of source nodes 0 and 9 have
highest load, while others’ loads gradually reduce along
with their increasing distance towards source nodes in
topology. Obviously, node 8 has the least computation load
for its longest distance towards 0 and 9. The above results
conform to the principle that tasks should be scheduled to
nodes which are close to source nodes.

Fig. 5 shows the results that nodes belong to different
computing capacities, in which tasks are submitted on
nodes 1 and 10, and computing capacities of node 1 is 3,
capabilities of node 4, 5 and 8 are 4, nodes else belong to 1.

Figure 4. All nodes have same ability.

Figure 5. Nodes have different ability.

Figure 6. Node invalidation.

Obviously, computation loads of nodes are accordant with
their capacities in figure. Computation finished by node
with 4 computing capacities is almost four times than that
by node with 1 capacity, and that finished by 3-capacity
node is three times than that by 1-capacity node.

In Fig. 6, nodes 1 and 7 are source nodes and all
nodes have 1 computing capacities. During running of
system, node 3 was set to failure suddenly, and due to
its invalidation, the network is partitioned into three sub-
networks which correctly performed all the same. From
then on, sub-network composed of nodes 0, 1 and 2 just
worked for source node 2 and ultimate computation of
nodes 0, 1 and 2 lay at almost the same level. Sub-network
composed of 5, 6, 7, 8, 9 and 10 serves for source 7, in
which loads of nodes are almost the same. Node 4 is cut
off from network owing to node 3’s failure, and as a result,
it cannot get any tasks and its load keep fixed from then
on. Finally, ultimate loads of nodes 4 and 3 are almost the
same in amount.

Figure 7. The simulation result with same node ability.

Figs. 7, 8 and 9 are the simulation results utilizing
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Figure 8. The simulation result with different node ability, (b) shows the local of (a).

Figure 9. The simulation result of invalidating 50 nodes randomly, (b) shows the local of (a).

Figure 10. The analysis of extra consuming computation.

the autonomous systems-level Internet topology in Fig. 2
and the results are the average of 10 simulations. Three
source nodes were randomly selected and every source node
was submitted 50,000 tasks every time. Task grain was
generated following uniform distribution U(4900,5100).

Fig. 7 shows the results in which all nodes’ capacities
are 1. It is displayed that computation executed by all
nodes lay at almost the same level.

Fig. 8 is the result that nodes belong to different
computation capacities, in which capacities of node were
randomly generated following uniform distribution U(1,6).
In the figure, computation loads finished by nodes with
same capacities are nearly the same, and nodes whose ca-
pacities are larger than 1 have more multiples computation
loads than node with 1 capacity. The multiples correspond
with comparison between computing capacities, which il-
lustrates that nodes with different capacities are utilized
fully in LMCGrid.

Fig. 9 is result comparison when 50 nodes are ran-
domly set to failure during simulation. Nodes capacities
were randomly created following U(1,6). Despite failure
of 5% of nodes in topology, system worked correctly and
got all results of tasks in the end. Validate nodes with the
same capacities completed almost the same computation,
and nodes with distinguishing loads comparing with their
capacities were just failed nodes which load remains the
same as what they had gained before failure.

We analyse extra cost of task scheduling algorithm ac-

cording to the rate of extra computation against total com-
putation. The extra consuming computation rate (ECCR)
is defined as: ECCR= TRC−TC

TC , and total computation
(TC) is the computation sum of all tasks submitted by
users, total real computation (TRC) is the computation
sum of tasks really executed by grid system. We study the
ECCR by simulation on 1,000 nodes Internet autonomous
systems-level topology. Figure 10 demonstrates the ECCR
trend following the change of n/m when MST is set differ-
ent values. n is the tasks number and m is nodes number
(m equals 1,000). The curves are the average of 10 simu-
lations, and a node is randomly chosen from topology and
different number of tasks are submitted on chosen node at
a simulation time to generate different values of n/m, and
also task computation is generated following U(4900,5100).
It shows that increasing scheduling MST would lead to
more extra computation cost. However, ECCR gradu-
ally descends along with the increasing of n/m, and when
n/m achieves 10, ECCR is just only 15% notwithstanding
scheduling MST is 6, comparing with the cost of methods
which need real-time monitor of nodes and tasks, the extra
computation in LMCGrid is acceptable.

The results above show that although node just bases
on a small set of loose and imprecise information of neigh-
bour nodes, task scheduling algorithm and limited task
duplicating algorithm of LMCGrid are able to distribute
the tasks from source node to its “able” adjacent nodes to
run and avoid network variability by a little of extra com-
putation. Reliable and persistent computing power could
be supplied by LMCGrid. Simulations based on some sim-
ple topologies such as line, circle and star-graph as well
as more complex topologies were performed too, and the
results turned out to be similar to the results described in
this paper.

7. Conclusion

In this paper, an LMCGrid model is presented, and cor-
responding information mechanism, task scheduling al-
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gorithm as well as limited task duplicating algorithm.
Without any global information, task scheduling algorithm
based on information mechanism naturally shapes proper
resources area to serve different grid users. Limited task
duplicating algorithm consuming small extra computing
cycles screens the variability of network and eliminates
the cost of real-time monitoring nodes and tasks. Sim-
ulation was performed to verify the validity and analyse
performance essentially and results showed that LMCGrid
was able to effectively utilize the large-scale idle comput-
ing resources connected to the Internet, and to achieve
proper distribution of loads as well as avoiding the net-
work variability entirely. It supplies a simple but effective
method for computing of parameter sweep and Monte-
Carlo method.
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